PREFORMED™ Lashing Rod

Lashing Rod

Preformed Lashing Rods can be used on all types of messengered overhead cables. They are particularly adaptable to spans obstructed by trees, short spans over traffic intersections, or repairing existing installations. Once applied they provide a permanently snug and secure fit. The factory preformed helical rods have an overall low cost with simple installation that requires no special tools or lashing machines.

Part Number (Standard)	Part Number (Coated)	Conductor Diameter Range (mm)	Standard Pack Quantity	Colour Code
GLR-10-11	GLR-10-11C	10.00 - 11.00	100	Yellow
GLR-15-17	GLR-15-17C	15.00 - 17.00	100	Red
GLR-171190	GLR-171190C	17.10 - 19.00	200	Black
GLR-191213	GLR-191213C	19.10 - 21.30	200	Red
GLR-214239	GLR-214239C	21.40 - 23.90	200	White
GLR-240266	GLR-240266C	24.00 - 26.60	200	Orange
GLR-267297	GLR-267297C	26.70 - 29.70	200	Green
GLR-298332	GLR-298332C	29.80 - 33.20	200	Yellow
GLR-333371	GLR-333371C	33.30 - 37.10	200	Purple
GLR-372414	GLR-372414C	37.20 - 41.40	100	Red
GLR-415462	GLR-415462C	41.50 - 46.20	200	White
GLR-463518	GLR-463518C	46.30 - 51.80	100	Orange

Size Selection

In selecting the proper size lashing rod it is necessary to determine the smallest circumscribing circle that will enclose the messenger and cables.

For most installations, one Lashing Rod should be applied, overlapping one pitch length with each successive rod. Two Lashing Rods, applied 180° apart, are recommended when the cable-messenger assembly weighs more than 12 kg per metre, or at installation where the angle of sag exceeds 20° from the horizontal.

One Cable

For grouping only one cable with a messenger, add the diameters and multiply by a factor of 0.850

 $C = (D + m) \times 0.85$

Three Cable

For grouping three equal diameter cables; multiply the diameter of one cable by a factor of 2.155. Then to find the diameter of the maximum messenger that will fit in the interstices of the cables, multiply the diameter of one cable by a factor of 0.483

 $C = D \times 2.155$ $m = D \times 0.483$

III - D X 0.400

For grouping unequal diameter cables, or messengers too large to fit into the interstices above, the minimum diameter grouping can best be determined by a graphic layout to scale.

Unequal Diameter Cable

Two Cable

For grouping two equal diameter cables; multiply the diameter of one cable by a factor of 2.00. Then find the diameter of the maximum messenger that will fit in the interstices of the cables, and multiply the diameter of one cable by a factor of 0.666.

Four Cable

For grouping four equal diameter cables; multiply the diameter of one cable by a factor of 2.414. Then to find the diameter of the maximum messenger that will fit in the interstices of the cables, multiply the diameter of one cable by a factor of 0.414

 $C = D \times 2.414$ $m = D \times 0.414$

